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Abstract

This paper investigates key properties of the Fejér kernel, a funda-
mental concept in harmonic analysis and Fourier series. The Fejér kernel,
defined as the arithmetic mean of the first n partial sums of the Fourier
series, is known for its role in the Cesàro summation method. We prove
several important properties of the Fejér kernel.

1 Properties

Define

Fn(x) =
1

n

n−1∑
k=0

Dk(x), n ∈ N . (1)

as the Fejér kernel and

Dn(x) =

n∑
k=−n

eikx, n = 0, 1, 2, . . .

as the Dirichlet kernel. As such, the following results hold
(a) We have

Fn(x) =


1

n

(
sin(nx/2)

sin(x/2)

)2

, if x/2π /∈ Z;

n, if x/2π ∈ Z.

(b) (2π)−1
∫ π

−π
Fn(t)dt = 1.

(c) Fn(−x) = Fn(x) for each x ∈ R.
(d) For each δ ∈ (0, π), limn→∞ sup{Fn(x) : δ ≤ |x| ≤ π} = 0.
(e) If f ∈ L1

2π, then An(f)(x) = (2π)−1
∫ π

−π
f(t)Fn(x− t)dt for each x ∈ R.

2 Proofs

Proof. (b) Substituting the definition of the Dirichlet kernel, into (1), we get

Fn(t) =
1

n

n−1∑
k=0

k∑
m=−k

eimt.
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Hence, integrating Fn(t) from −π to π,

(2π)−1

∫ π

−π

Fn(t)dt = (2π)−1

∫ π

−π

(
1

n

n−1∑
k=0

k∑
m=−k

eimt

)
dt

=
1

n

n−1∑
k=0

k∑
m=−k

(
(2π)−1

∫ π

−π

eimtdt

)
.

(2)

For m > 0, where m is an integer, we have

(2π)−1

∫ π

−π

eimtdt = (2π)−1

∫ π

−π

[cos(mt) + i sin(mt)] dt

= (2π)−1

[∫ π

−π

cos(mt)dt+ i

∫ π

−π

sin(mt)dt

]
= (2π)−1

[
sin(mt)

m

∣∣∣π
−π

− i
cos(mt)

m

∣∣∣π
−π

]
= (2π)−1[0− i(0)]

= 0.

For m = 0, we have

(2π)−1

∫ π

−π

ei0tdt = (2π)−1

∫ π

−π

1dt

= (2π)−1[π − (−π)]

= (2π)−1(2π)

= 1.

Hence, (2) becomes

(2π)−1

∫ π

−π

Fn(t)dt =
1

n

n−1∑
k=0

1 =
1

n

n∑
k=1

1 =
1

n
n = 1.

Proof. (c) First, for x ∈ R such that x/2π /∈ Z, then by part (a) we have

Fn(x) =
1

n

(
sin(nx/2)

sin(x/2)

)2

.

By the negative angle identity, sin(−x) = − sin(x), so

Fn(−x) =
1

n

(
sin(−nx/2)

sin(−x/2)

)2

=
1

n

(
− sin(nx/2)

− sin(x/2)

)2

=
1

n

(
sin(nx/2)

sin(x/2)

)2

= Fn(x).

2



Second, for x ∈ R such that x/2π ∈ Z, then x = 2mπ and −x = −2mπ for
some integer m. Hence, by part (a)

Fn(x) = n

and
Fn(−x) = n.

Therefore, in either case, Fn(x) = Fn(−x) for each x ∈ R.

Proof. (d) Let δ ∈ (0, π). Since δ ≤ |x| ≤ π, we have 0 < δ < |x|, so sin2 x >
sin2 δ. From part (a), we have

Fn(x) =
1

n

(
sin2(nx/2)

sin2(x/2)

)
since for all x ∈ [δ, π], where δ ∈ (0, π), we have x/2π /∈ Z. Hence,

Fn(x) =
1

n

(
sin2(nx/2)

sin2(x/2)

)
<

1

n

(
sin2(nx/2)

sin2(δ/2)

)
=

1

n sin2(δ/2)
sin2(nx/2)

Taking the supremum of both sides, for δ ≤ |x| ≤ π, we get

sup
δ≤|x|≤π

Fn(x) <
1

n sin2(δ/2)
sup

δ≤|x|≤π

sin2(nx/2)

≤ 1

n sin2(δ/2)
· 1

(3)

since sin2(nx/2) alternates between 0 and 1. Taking the limit as n → ∞ of both
sides of (3), we get

lim
n→∞

sup
δ≤|x|≤π

Fn(x) ≤ lim
n→∞

1

n sin2(δ/2)

= 0.

(4)

Also, by part (a), Fn(x) ≥ 0 for all x. As such, limn→∞ supδ≤|x|≤π Fn(x) ≥
0. Combining the previous sentence with (4), we get for each δ ∈ (0, π),
limn→∞ sup{Fn(x) : δ ≤ |x| ≤ π} = 0, as desired.

Proof. (e) For f ∈ L1
2π, we have

An(f)(x) =
1

n

n−1∑
k=0

Sk(f)(x). (5)

Let Sn(f) denote the nth partial sum of the Fourier series of f :

Sn(f)(x) =

n∑
k=−n

f̂(k)eikx. (6)
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For f ∈ L1([−π, π]), the function f̂ : Z → C defined by

f̂(m) =
1

2π

∫ π

−π

f(t)e−imtdt. (7)

is called the Fourier transform of f . Substituting (6) and (7) into (5), we get

An(f)(x) =
1

n

n−1∑
k=0

k∑
m=−k

f̂(m)eimx

=
1

n

n−1∑
k=0

k∑
m=−k

[
1

2π

∫ π

−π

f(t)e−imtdt

]
eimx

=
1

n

n−1∑
k=0

k∑
m=−k

1

2π

∫ π

−π

f(t)e−imteimxdt

=
1

2π

∫ π

−π

f(t)
1

n

n−1∑
k=0

k∑
m=−k

eim(x−t)dt

=
1

2π

∫ π

−π

f(t)
1

n

n−1∑
k=0

Dk(x− t)dt

=
1

2π

∫ π

−π

f(t)Fn(x− t)dt

for all x ∈ R.
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